233 research outputs found

    Local category-specific gamma band responses in the visual cortex do not reflect conscious perception

    Get PDF
    Which neural processes underlie our conscious experience? One theoretical view argues that the neural correlates of consciousness (NCC) reside in local activity in sensory cortices. Accordingly, local category-specific gamma band responses in visual cortex correlate with conscious perception. However, as most studies manipulated conscious perception by altering the amount of sensory evidence, it is possible that they reflect prerequisites or consequences of consciousness rather than the actual NCC. Here we directly address this issue by developing a new experimental paradigm in which conscious perception is modulated either by sensory evidence or by previous exposure of the images while recording intracranial EEG from the higher-order visual cortex of human epilepsy patients. A clear prediction is that neural processes directly reflecting conscious perception should be present regardless of how it comes about. In contrast, we observed that although subjective reports were modulated both by sensory evidence and by previous exposure, gamma band responses solely reflected sensory evidence. This result contradicts the proposal that local gamma band responses in the higher-order visual cortex reflect conscious perception

    A computational study on altered theta-gamma coupling during learning and phase coding

    Get PDF
    There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus

    Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation

    Get PDF
    Decreases in low-frequency power (2-30 Hz) alongside high-frequency power increases (>40 Hz) have been demonstrated to predict successful memory formation. Parsimoniously, this change in the frequency spectrum can be explained by one factor, a change in the tilt of the power spectrum (from steep to flat) indicating engaged brain regions. A competing view is that the change in the power spectrum contains several distinct brain oscillatory fingerprints, each serving different computations. Here, we contrast these two theories in a parallel magnetoencephalography (MEG)-intracranial electroencephalography (iEEG) study in which healthy participants and epilepsy patients, respectively, studied either familiar verbal material or unfamiliar faces. We investigated whether modulations in specific frequency bands can be dissociated in time and space and by experimental manipulation. Both MEG and iEEG data show that decreases in alpha/beta power specifically predicted the encoding of words but not faces, whereas increases in gamma power and decreases in theta power predicted memory formation irrespective of material. Critically, these different oscillatory signatures of memory encoding were evident in different brain regions. Moreover, high-frequency gamma power increases occurred significantly earlier compared to low-frequency theta power decreases. These results show that simple "spectral tilt" cannot explain common oscillatory changes and demonstrate that brain oscillations in different frequency bands serve different functions for memory encoding

    A second horizon scan of biogeography:golden ages, Midas touches, and the Red Queen

    Get PDF
    Are we entering a new ‘Golden Age’ of biogeography, with continued development of infrastructure and ideas? We highlight recent developments, and the challenges and opportunities they bring, in light of the snapshot provided by the 7th biennial meeting of the International Biogeography Society (IBS 2015). We summarize themes in and across 15 symposia using narrative analysis and word clouds, which we complement with recent publication trends and ‘research fronts’. We find that biogeography is still strongly defined by core sub-disciplines that reflect its origins in botanical, zoological (particularly bird and mammal), and geographic (e.g., island, montane) studies of the 1800s. That core is being enriched by large datasets (e.g. of environmental variables, ‘omics’, species’ occurrences, traits) and new techniques (e.g., advances in genetics, remote sensing, modeling) that promote studies with increasing detail and at increasing scales; disciplinary breadth is being diversified (e.g., by developments in paleobiogeography and microbiology) and integrated through the transfer of approaches and sharing of theory (e.g., spatial modeling and phylogenetics in evolutionary–ecological contexts). Yet some subdisciplines remain on the fringe (e.g., marine biogeography, deep-time paleobiogeography), new horizons and new theory may be overshadowed by popular techniques (e.g., species distribution modelling), and hypotheses, data, and analyses may each be wanting. Trends in publication suggest a shift away from traditional biogeography journals to multidisciplinary or open access journals. Thus, there are currently many stewardship of, the planet (e.g., Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). As in the past, biogeographers doubtless will continue to be engaged by new data and methods in exploring the nexus between biology and geography for decades into the future. But golden ages come and go, and they need not touch every domain in a discipline nor affect subdisciplines at the same time; moreover, what appears to be a Golden Age may sometimes have an undesirable ‘Midas touch’. Contexts within and outwith biogeography—e.g., methods, knowledge, climate, biodiversity, politics—are continually changing, and at times it can be challenging to establish or maintain relevance. In so many races with the Red Queen, we suggest that biogeography will enjoy greatest success if we also increasingly engage with the epistemology of our disciplinePeer reviewe

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Get PDF
    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions

    The Sleeping Brain's Influence on Verbal Memory: Boosting Resistance to Interference

    Get PDF
    Memories evolve. After learning something new, the brain initiates a complex set of post-learning processing that facilitates recall (i.e., consolidation). Evidence points to sleep as one of the determinants of that change. But whenever a behavioral study of episodic memory shows a benefit of sleep, critics assert that sleep only leads to a temporary shelter from the damaging effects of interference that would otherwise accrue during wakefulness. To evaluate the potentially active role of sleep for verbal memory, we compared memory recall after sleep, with and without interference before testing. We demonstrated that recall performance for verbal memory was greater after sleep than after wakefulness. And when using interference testing, that difference was even more pronounced. By introducing interference after sleep, this study confirms an experimental paradigm that demonstrates the active role of sleep in consolidating memory, and unmasks the large magnitude of that benefit
    • …
    corecore